2015年论文
论文题目 | 作者 | 刊物名称 | 年/卷/页 |
Comparison of permafrost degradation under natural ground surfaces and embankments of the Qinghai–Tibet Highway | Fan Yu | Cold Regions Science and Technology | 2015, 114: 1-8 |
Assessment of Terrain Susceptibility to Thermokarst Lake Development along the Qinghai-Tibet Engineering Corridor, China | Fujun Niu | Environmental Earth Sciences | 2015,73(9):5631-5642 |
Laboratory testing on heat transfer of frozne soil blocks used as backfills of pile foundation in permafrost along Qinghai-Tibet electrical transmission line | Guoyu Li | Arabian Journal of Geosciences | 2015,8(5):2527-2535 |
The thermal effect of strengthening measures in an insulated embankment in a permafrost region | Hou Yandong | Cold Regions Science and Technology | 2015, 116: 49-55 |
Thermal stabilization of duct-ventilated railway embankments in permafrost regions using ripped-rock revetment | Hou Yandong | Cold Region Science and Technology | 2015, 120, 145-152 |
Degradation characteristics of permafrost under the effect of climate warming and engineering disturbance along the Qinghai–Tibet Highway | Hui Peng | Natural Hazards | 2015, 75(3): 2589-2605 |
Impacts of permafrost degradation on embankment deformation of the Qinghai-Tibet Highway in permafrost regions | Hui Peng | Journal of central South University | 2015, 22:1079-1086 |
Cooling Effect of Crushed Rock-Based Embankment along the Chaidaer-Muli Railway | Ji Chen | Advances in Materials Science and Engineering | 2015, (4):1-8. DOI: http://dx.doi.org/10.1155/2015/182437 |
Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai–Tibet Plateau, China | Jing Luo | Science Bulletin | 2015, 60(5):556-564 |
Lateral thermal disturbance of embankments in the permafrost regions of the Qinghai-Tibet Engineering Corridor | Mingyi Zhang | Natural Hazards | 2015, 78: 2121–2142.(SCI) |
Evaluating the cooling performance of crushed-rock interlayer embankments with unperforated and perforated ventilation ducts in permafrost regions | Mingyi Zhang | Energy | 2015, 93: 874-881.(SCI) |
Assessment of terrain susceptibility to thermokarst lake development along the Qinghai–Tibet engineering corridor, China | Niu F | Environmental Earth Sciences | 2015, 73(9): 5631-5642 |
Long-term thermal regimes of the Qinghai-Tibet Railway embankments in plateau permafrost regions | Niu Fujun | Science China-Earth Sciences | 2015, 58(9): 1669-1676 |
Comparative analysis of temperature variation characteristics of permafrost roadbeds with different widths | Qihao Yu | Cold Regions Science and Technology | 2015, 117: 12–18 |
Impact of climatic factors on permafrost of the QinghaieXizang Plateau in the time-frequency domain | Siru Gao | Quaternary International | 2015, 374: 110-117 |
Period analysis and trend forecast for soil temperature in the Qinghai-Xizang Highway by wavelet transformation | Siru Gao | Environmental Earth Sciences | 2015, 74: 2883–2891 |
Thermal regime of frozen soil foundation affected by concrete base of transmission line tower on the Tibetan Plateau | W.B. Liu | Applied Thermal Engineering | 2015,75:950-957 |
Discussion of Applicability of the Generalized Clausius-Clapeyron Equation and the Frozen Fringe Process | Wei Ma | Earth Science Reviews | 2015, 142: 47-59 |
Thermal-moisture dynamics of embankment with asphalt pavement in permafrost regions of central Tibetan Plateau[J] | Wen Zhi | European Journal of Environmental and Civil Engineering | 2015, 19(4): 387-399. doi: 10.1080/19648189.2014.945043.(SCI) |
Changes in active layer thickness and thermal state of permafrost between 2002-2012 in a variety of alpine ecosystem, Qinghai-Xizang (Tibet) Plateau, China | Wu Qingbai | Global and Planetary Change | 2015, 124, 149-155 |
The thermal regime, including a reversed thermal offset, of arid permafrost sites with variations in vegetation cover density, Wudaoliang Basin, Qinghai-Tibet Plateau | Zhanju Lin | Permafrost and Periglacial Processes | 2015, 26(2): 142-159 |
青藏铁路路基下融化夹层特征及其对路基沉降变形的影响 | 高宝林 | 冰川冻土 | 2015,37(1):126-131 |
青藏铁路碎石护坡-热管复合措施的补强效果研究 | 侯彦东 | 冰川冻土 | 2015,37(1):118-125 |
青藏工程走廊热融湖湖底热状态 | 林战举 | 地球科学 | 2015,40(1) : 179-188 |
青藏工程走廊热融湖湖底热状态 | 林战举 | 地球科学 | 2015, 40(1) : 179-188 |
多年冻土区青藏铁路路基的长期热状况 | 牛富俊 | 中国科学:地球科学 | 2015,45(8):1220-1228 |
青藏公路普通填土路基长期变形特征与路基病害调查分析 | 彭惠 | 岩土力学 | 2015, 36(7):1-8,(EI) |
青藏铁路运营以来冻土路基变形特征及其来源探讨 | 王进昌 | 甘肃科技 | 2015,31(1):80-83 |
青藏高原昆仑山垭口盆地发现天然气水合物赋存的证据 | 吴青柏 | 科学通报 | 2015,60(1):68-74 |
适用于多年冻土区具有碳通量自动观测性能的OTC系统开发设计 | 贠汉伯 | 冰川冻土 | 2015,37(2):454-460 |
北麓河多年冻土活动层水热迁移规律分析[J] | 张明礼 | 干旱区资源与环境 | 2015, 29(9): 176-181 |
青藏高原公路路面结构水热差异变化分析 | 张中琼 | 2015,45(5):975-979 | |
多年冻土区典型地面浅层地温对降水的响应 | 张中琼 | 长安大学学报(自然科学版) | 2015,23(5):948-953 |
青藏高原北麓河地区沥青路面辐射特征分析 | 张中琼 | 冰川冻土 | 2015,37(2):408-415 |
不同地面类型热物理性质差异 | 张中琼 | 长安大学学报(自然科学版) | 2015,35(4):41-47 |
冻融循环对土结构性影响的试验研究及影响机理分析 | 郑郧 | 岩土力学 | 2015, 36(05): 1282-1287,(EI) |
Analysis of permanent deformations of railway embankments under repeated vehicle loadings in permafrost regions | Wei Ma | Sciences in Cold and Arid Regions | 2015, 7(6):645-653 |